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Abstract
In recent years application of a discrete wavelet transform (DWT) has become an estab-
lished tool for the design of preconditioners for smooth, dense matrices, such as those
that arise in the solution of certain integral equations. In this paper we consider the
higher dimensional case, where the matrix A is not itself smooth, but has a smooth block
structure. To precondition such matrices, we use repeated application of a level 1 block-
wise DWT to exploit the fact that corresponding entries in adjacent blocks are close in
value. We illustrate the effectiveness of our methods by means of numerical examples.

1 Introduction
We have previously ([9]) considered wavelet-based preconditioning methods for dense
matrices having the property that the entries vary smoothly (that is to say, adjacent
entries are close in value) apart from known areas of singularity, for example a non-
smooth diagonal band. The main idea is to use wavelet compression (see, for example
[14]) to convert "smoothness" in the original matrix into "smallness" in the transformed
matrix, and then to approximate the transformed matrix by dropping small entries.
Smooth matrices arise in a range of applications (see, for example, [6, 8, 10]) involving
an essentially 1-dimensional discretization process. In higher dimension cases the corres-
ponding matrices have a block structure: each block is smooth and corresponding entries
in different blocks vary smoothly; but discontinuities at the edges of the blocks mean that
standard application of DWT does not give good compression. In this paper we extend
the ideas of [9] to enable preconditioners to be designed for such matrices. Throughout
we use Daubechies wavelets, which are orthogonal and have compact support.

2 DWT-based preconditioners
We are interested in fast solution of linear systems

Ax = b, x,b E Cn, AECxn, (2.1)

where A is a large, dense matrix. Krylov subspace iterative methods, such as GMRES
(described in [13]), can be used to solve (2.1), but in most cases preconditioning is
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required in order to obtain good convergence. One method of preconditioning is to seek
a matrix M & A such that M- 1 v can be calculated cheaply for any vector v. For smooth
dense A the task is usually made easier by transforming (2.1) into a wavelet basis (see
e.g. [4, 5, 6, 10, 11]). When a DWT is applied to such an A, the resulting matrix A has
many small elements. A sparse A z A can be obtained by setting to zero small elements.
This is the main idea underlying most wavelet-based preconditioners.

2.1 Preconditioners for 1-D problems

Typically A is smooth apart from a narrow diagonal band. When a level k standard DWT
is applied A has a 'finger' pattern of large entries (caused by the non-smooth diagonal
feature) and an n/2k x n/2k block of large entries at the top-left corner. Here n should
be a power of 2. We can form a preconditioner M ; A by setting to zero entries that fall
below some chosen threshold, but, because of the finger pattern, a large amount of fill-in
occurs under LU factorization. To avoid this problem M can be obtained by setting to
zero entries in A that fall outside of a diagonal band. We describe this approach as a
"band cut".

The finger pattern can be avoided by using DWTPer (DWT with permutations, first
proposed in [6], see also [7]), which centres the fingers to form a sparse diagonal band
whose width can be predicted accurately. M can then be formed by applying a band cut
to A and (optionally) imposing a threshold.

An alternative way of avoiding the creation of a finger pattern matrix is to use the
Non-Standard-forms (NS-forms) of Beylkin, Coifman and Rokhlin (see [3]) to represent
A in terms of the blocks of a larger matrix. In [9] we presented a new way of using the
NS-form submatrices to precondition A based on the Schur complement and recursive
application of a flexible GMRES iteration. We compared four alternative DWT-based
preconditioning methods:

P1 standard DWT preconditioner with band cut ([5]),
P2 DWTPer preconditioner with band cut ([6, 10]),
P3 NS-form preconditioner with threshold ([3, 11]),
P4 Recursive Schur complement preconditioner ([9]),

and found that, for smooth matrices with a diagonal singularity, P4 gave consistently
good performance, P1 performed well for moderate singularities and P2 was best when
the diagonal singularity was very pronounced. When we came to consider 2-D problems,
the robustness of P4 encouraged us to consider ways of extending it to higher dimensions.

2.2 Extension to matrices with block structure

In the 2-dimensional case we are concerned with matrices that have a smooth block
structure. We can compress dense block matrices of this type using two different types
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of DWT: The block DWT has a transform matrix of the form
W(n) 0 ... • 0

B = M ® = 0 w- (2.2)

0 ... ... W (n)

where W(n) is a standard n x n DWT matrix and 0 is the n x n zero matrix. It exploits
smoothness within blocks. The Big Block DWT (BBDWT) exploits smoothness
between blocks. It has a transform matrix of the form

(,,) W( w... ) 0/.
hoI h11 .. hD-1I 0 ... ........ 0
0 0 hoI hlI ... hD-1I 0 0

h21 ... hD-1I 0 0. . ... . 0 h I h
goI glI "" gm-1I 0 ... ........ I (2.3)
0 0 goI glI gD-1I 0 ...... 0

g21 ... gD-1l 0 ... 0 goI gil

where ho,... , hD-1 and go,... ,gD-1 are the low-pass and high-pass filter coefficients
respectively (D being the order of the wavelet transform), I is the n x n identity matrix
and 0 is the nxn zero matrix. The resulting transformed matrix has a 'finger' structure of
blocks, each with a diagonal structure. We can avoid the finger pattern by permuting the
rows and columns of the transformed matrix so as to centre the blocks containing large
entries. We call this modified big block transform BBDWTPer, because it is a big block
version of the DWTPer transform described in [10]. We anticipate that BBDWTPer
may be useful for preconditioning block matrices with a very strong block diagonal
singularity (see the comparison of DWTPer and other DWT-based preconditioners in
[9]), but we have not yet found example matrices for which BBDWTPer provides a good
preconditioner. Preconditioners based on BBDWT and BBDWTPer are tested in Section
4; we now present a more effective method.

3 Recursive BBDWT-based preconditioning
An alternative way of avoiding the 'finger' pattern is to use a 'Big Block' version of the
NS-forms presented in [3]. We define the Big Block NS-form (BBNS-form) of a matrix
as follows. To transform a matrix consisting of m 2 blocks, each of dimension n (where m
and n are powers of 2) we define Pi, Qj to be the mn/2ý x mn/2'- 1 matrices such that

WB(m/2B-0,n) Pi (3.1)B -'• Pi "
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Given an mn x mn matrix A, define To = A,

T= P.TP_lPT, Ai = QiT._lQiT, B = Q.T.-PiT, C = PiT.-QiT, (3.2)

SAi+l Bi~l i (3.3)

Ci+1  Ti+1

The level k BBNS-form of A comprises Tk together with Ai, Bi, Ci, i = 1, 2, ... , k. (The
blocks of T4 are arranged differently from those of the standard level 1 DWT of Ti. We
have used this ordering in order to be consistent with the notation of [3].)

We propose to use banded approximations to the submatrices of the BBNS-form as
the basis for our preconditioner. If the blocks of A vary smoothly apart from a diagonal
block band, then each of Ai+±, Bi+i, Cj+l will have small entries except for a wrap-
round diagonal block band. So we can approximate them by Ai+1 , Bi+i, COi+, formed
by cutting to a block band, giving an approximation Ti to T:

Ti 4i÷j A+i1) (3.4)

Ci+1 Ti+ )"

(In practice, it is unnecessary to compute Ai+i, Bi+1 , Ci+j and then to set entries outside
the block band to zero; instead we can compute only the non-zero entries of A-4+1 B+ ,
Ci+1 . This enables us to reduce the cost of forming Ti.)

We now show how this can help us to solve (2.1). We use a flexible GMRES iteration
(see [12]) preconditioned by approximate solution of an equation of the form Ay = v at
each step. To do this we first apply a level 1 BBDWT with a block band cut to give

where ý1 = Qly, /2 = Ply, Vl = QIv, v 2 = Piv. We solve this equation using the Schur
complement Si = T, - C1 A-iB 1 . This requires us to solve an equation of the form

Siy2 = W2, (3.6)

which we do by a further GMRES iteration. We expect that Ti will be an effective
preconditioner for Si (see [1]§9.3), so we now seek a cheap way of applying T-i to a
vector. To do this we repeat the process of applying a level 1 BBDWT and using the
Schur complement. In summary, during the solution of (3.6) we solve a preconditioning
equation of the form

Tiy = v, y, v E Cmn/ 2 . (3.7)

To do this cheaply we repeat the process of applying a level 1 BBDWT and using the
Schur complement and obtain an equation of the form

S 2 z = w, z,7w E Cmn/4 . (3.8)

This in turn can be solved using flexible GMRES preconditioned by T2. We continue
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recursively, solving equations of the form

Siz=w, z, w eC,,12 (3.9)

iteratively, preconditioning by solving equations of the form

Ty = v, y, v E Cm/ 2i, (3.10)

until the matrix Tj is small enough that Ti-1 can be applied directly by means of LU
factorization at low cost. Therefore, at level i, each GMRES iteration requires a pre-
conditioning step that in turn calls for iterative solution by GMRES of a coarser level
equation. At the coarsest level the preconditioner is applied directly using an LU factor-
ization of Ti+,. This process is summarized in Algorithm 3.1.

Algorithm 3.1 Approximate solution of Tiy = v.

(1) Compute f), = Qi+lv, v2 = Pi+lv.
(2) Solve Afi+j1 1 = fv, for 2v1.

(3) Set W2 = v2- Ci+1 V.
(4) Define Si+j Ti+l - -i+,A-1 -+i.

(5) Solve Si+1y2 = 112 for Y2 by flexible GMRES iteration, preconditioning with Ti+,,
using Algorithm 3.1 if i + 1 < k and using matrices Li+,, Ui+j otherwise.

(6) Set ýj = -

(7) Set y y- Pj+)( 2 "

To solve equation (2.1), we start the solution process for level i = 0 and apply a
GMRES iteration with the preconditioner T1 to the Schur complement of the transformed
To = A. The overall method is presented in Algorithm 3.2.

Algorithm 3.2 Solution of Ax = b by recursively preconditioned flexible GMRES.

(1) Set up

(a) Input matrix A, vector b, tolerance t.
(b) Decide on values for:

* maximum wavelet level, k,
* tolerance ti for inner iterations,
e block band width for approximating the submatrices.

(c) Set To = A and i = 0.
(d) Recursively, for i = I ... k + 1, compute T i, Ai, BA, Ci, and factorize Ai.
(e) Factorize T k+1 into Lk+l, Uk+1.

(2) Solve Tox = b by flexible GMRES preconditioned using Algorithm, 3.1.

Note that the relatively expensive step of computing the BBNS-form matrices A-, Bi, C1i, T
is done only once.
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4 Numerical results
Here we illustrate the effectiveness of our method, and compare it with some alternative
approaches, by considering two example mn x mn matrices:

A +- c i kandj=l, (4.1)! log((i - k otherwise,

for i, k 0 , 1,... ,m - 1; j, 1 = 0, 1,... ,n - 1; c a constant.

Bni+j,nk+l - e-((i-k) 2+(j-1) 2 ), (4.2)

fori, k=0, 1,...,m-1;j,l =0,1,....n- 1.
Tables 1 and 2 give typical results for the matrices A and B respectively. The cost

of reducing the relative residual norm to a tolerance of 10-6 is shown for matrices of
various sizes using the following preconditioners:

P1 simple band preconditioner,
P2 standard BBDWT + band cut preconditioner,
P3 BBDWTPer + band cut preconditioner,
P4 recursive BBDWT-based preconditioner.

In each case GMRES was restarted after 10 iterations. '*' denotes non-convergence of
GMRES(10). Unpreconditioned GMRES(10) failed to converge to the required tolerance
for any size of matrix, so it is omitted from the tables.

Preconditioned GMRES Direct
m n N= mn P1 P2 P3 P4 solution

its. Mflops its. Mflops its. Mflops its. Mflops Mflops
8 8 64 30 0.65 49 1.2 38 0.99 6 0.32 0.21

16 16 256 58 17 • * * * 7 5.5 12
32 32 1024 86 393 * * * * 7 150 720
64 64 4096 , * * * * * 7 6300 46000

TAB. 1. Cost of solving Ax = b.

Preconditioned GMRES Direct
m n N -n _ P1 P2 P3 P4 solution

its. Mflops its. Mflops its. Mflops its. Mflops Mflops
8 8 64 8 0.19 8 0.26 8 0.26 4 0.26 0.21

16 16 256 62 19 66 21 63 21 6 5.6 12
32 32 1024 67 310 76 380 74 370 6 120 720
64 64 4096 69 5000 78 6000 78 6000 6 1700 46000

TAB. 2. Cost of solving Bx b.

Clearly the recursive BBDWT approach gives better performance -than the alternat-



360 M. Ford and K. Chen

ive preconditioners that we tested and offers substantial savings compared with direct
solution.

5 Conclusion and future work
We have designed a preconditioning method that exploits smoothness between the blocks
of a class of dense matrices giving useful savings compared with both direct solution and
preconditioned GMRES using band preconditioners. In the future we plan to explore a
number of ways of further improving our methods including: (a) using a block DWT,
in addition to the BBDWT, to exploit smoothness within each block; (b) using biortho-
gonal wavelets or multiwavelets (particularly the new supercompact Haar multiwavelets
presented in [2]) to give improved compression; (c) preprocessing the matrix to enhance
smoothness.
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